Как сделать паркет из равнобедренной трапеции

Расстояние между основаниями в равных трапециях (её высота) одинаково.

Сумма углов, прилежащих к одной боковой стороне трапеции, равна 180°. (Свойство углов при параллельных прямых и секущей)

В равнобедренной трапеции углы при её основаниях равны, следовательно, сумма ее противоположных углов также равна 180°. При укладке плитки основаниями на одной линии и боковая сторона к боковой, но с переменой положения оснований, получится единая плоскость без зазоров, которая может покрыть часть плоскости любой формы, что и требовалось доказать. (см. рисунок).

Источник: globuss24.ru

Как сделать паркет из равнобедренной трапеции

Расстояние между основаниями в равных трапециях (её высота) одинаково.

Сумма углов, прилежащих к одной боковой стороне трапеции, равна 180°. (Свойство углов при параллельных прямых и секущей)

Чем заделать скол на паркете?

В равнобедренной трапеции углы при её основаниях равны, следовательно, сумма ее противоположных углов также равна 180°. При укладке плитки основаниями на одной линии и боковая сторона к боковой, но с переменой положения оснований, получится единая плоскость без зазоров, которая может покрыть часть плоскости любой формы, что и требовалось доказать. (см. рисунок).

Источник: megaznanija.com

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

виды трапеций

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

равнобедренная трапеция

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

прямоугольная трапеция

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

средняя линия

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

свойство средней линии трапеции

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

биссектриса в трапеции

ЛОБОВИК НЕ ТРЕСНЕТ ЕСЛИ СДЕЛАТЬ ТАК

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Отношение площадей этих треугольников есть .

57

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

свойства трапеции, равновеликие треугольники

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

окружность, вписанная в трапецию

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

qk

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

е

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

трапеция с углами при основании в сумме 90

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

свойства равнобедренной трапеции

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

трапеция вписана в окружность

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

диагонали трапеции перпендикулярны

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то

4

Площадь

или где – средняя линия

площадь трапеции

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Похожие статьи на сайте.

  • Задачи на движение по прямой. Тест
  • Т/Р №221 А. Ларина (часть С)
  • Линейная функция
  • Коллекционерам формул посвящается
  • Обратная пропорциональность
  • Простейшие тригонометрические неравенства. Часть 2

Источник: egemaximum.ru

Рейтинг
( Пока оценок нет )
Загрузка ...